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Abstract
The fluctuation theorem (FT) has been studied as a far from equilibrium
theorem, which relates the symmetry of entropy production. To investigate the
application of this theorem, especially to biological physics, we consider the
FT for a tilted rachet system. Under natural assumptions, the FT for steady
state is derived.

PACS numbers: 05.10.Gg, 05.40.Jc, 05.60.Cd

1. Introduction

Since the discovery by Evans et al [1], the fluctuation theorem (FT) has been studied in many
situations, both stochastic [2–4] and deterministic [1, 5]; though systems and interpretations
differ, the FT has a universal form:

Prob(�S = A)

Prob(�S = −A)
� e�S (1)

where �S is the entropy generated, and Prob(�S = A) is the probability for �S = A. It is
interesting that a FT type of relation universally holds, but its direct experimental application
is not known. (Though Jarzynski’s equality [6] is closely related to FT and has been used
in the experiment, this equality is not the FT itself; in this sense application of Jarzynski’s
equality is not direct.) So, we would like to derive the FT for a rachet system, because it
relates biological physics, and direct application of the FT is expected. The analysis is based
on the Langevin treatment. Kurchan showed that for a Langevin system, if the initial state is
Gibbsian, the FT holds generally [3]. Though we consider the Langevin treatment, the result
does not depend on the initial condition and in this sense our interest is different from that of
Kurchan.

0305-4470/04/060075+05$30.00 © 2004 IOP Publishing Ltd Printed in the UK L75

http://stacks.iop.org/ja/37/L75


L76 Letter to the Editor

2. Rachet system

In this paper we consider the rachet system, namely a particle on a periodic potential
V (x + L) = V (x) is dragged by a constant load force F. Then, the effective potential the
particle feels is Veff ≡ V (x)−xF . If the potential barrier is high enough, the particle could be
considered to be almost at equilibrium and might satisfy the detailed balance relation. Indeed,
the quantitative argument is given in the review by Reimann [7]. We summarize the work by
Reimann.

We consider a system that a particle on a periodic potential (period L) is dragged by a
constant load force F. The motion of this particle can be described by the Langevin equation

η
d

dt
x(t) = − d

dx
Veff(x) + ξ(t)

Veff(x) ≡ V (x) − Fx

〈ξ(t)ξ(s)〉 =
√

2ηkBT δ(t − s).

The corresponding Fokker–Planck equation becomes

∂

∂t
P (x, t) = ∂

∂x

(
dVeff

dx

1

η
+

kBT

η

∂

∂x

)
P(x, t) = − ∂

∂x
J (x, t). (2)

Here J (x, t) is the probability current. Then at a steady state, the reduced probability current

Ĵ (x, t) ≡
∞∑

n=−∞
J (x + nL, t) (3)

becomes

Ĵ st = N

(
1 − exp

(
− FL

kBT

))
(4)

N = kBT

η

(∫ L

0
dx

∫ x+L

x

dy exp

(
Veff(y) − Veff(x)

kBT

))−1

.

If in each period L there exists one minimum xmin and one maximum xmax, and the system is in
the weak noise regime kBT � �Veff ≡ Veff(xmax)− Veff(xmin), the saddle-point approximation
gives the following probability current:

Ĵ st = k+ − k−

k+ =
∣∣ d2

dx2 Veff(xmax)
d2

dx2 Veff(xmin)
∣∣ 1

2

2πη
exp

(
−�Veff

kBT

)

k− = k+ exp

(
− FL

kBT

)
.

(5)

Here k+ and k− are the Kramers escape rates, the probabilities per unit time for a particle
near a potential minimum to escape to the right minimum and left minimum respectively
(figure 1). These k+ and k− satisfy the detailed balance relation

k+

k−
= exp

(
FL

kBT

)
. (6)
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Figure 1. A particle hopping on a tilted potential.

Random Walk
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Figure 2. Biased random walk of a particle.

3. Derivation of steady-state fluctuation theorem

Because of the assumption kBT � �Veff , we can describe the motion of a particle in terms of
a biased random walk. Namely, it is sufficient to observe only the local minimum of effective
potential and on which minimum the particle (approximately) exists at each discrete time
t = 0, τ, 2τ, . . . . It is natural to assume that a particle hops only to the nearest-neighbour local
minima: to the right minimum with probability k+, to the left minimum with k−, and it does
not move with probability 1 − (k+ + k−).

Then the motion of a particle follows the biased random walk. A particle hops to right,
left and remains with probabilities k+, k− and 1 − (k+ + k−), respectively (figure 2). Next we
consider the probability πn(k) which is the probability that after n unit time, a particle moves
k towards the right. Here we can show the equation

πn(k)

πn(−k)
=

(
k+

k−

)k

. (7)

One can prove this equation via following one-to-one correspondence: consider any process
that causes the movement k after n unit time. The process is constituted by movements: k + l
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times towards the right, l times towards the left and n − k − 2l times remaining. This process
occurs with the probability

n!

(k + l)!l!(n − k − 2l)!
kk+l

+ kl
−(1 − k+ − k−)n−k−2l . (8)

The corresponding opposite process: l times towards the right, k + l times towards the left and
n − k − 2l times remaining, occurs with the probability

n!

(k + l)!l!(n − k − 2l)!
kl

+k
k+l
− (1 − k+ − k−)n−k−2l . (9)

So the ratio of the probabilities that these two opposite processes occur is
(

k+
k−

)k
. This is valid

for any l, and the equation is derived.
Then we substitute the detailed balance relation for Kramers escape rate k+

k−
= exp

(
FL
kBT

)
into the above equation, and obtain the following expression:

πn(k)

πn(−k)
= exp

(
FLk

kBT

)
. (10)

We define the entropy generated �S ≡ �Q

kBT
, where �Q = FLk is the Joule heat. �S can

be considered as the entropy generated, since the work done on the system externally will be
entirely dissipated, and there is no contribution to the internal energy. Finally, we take the
continuous limit, n → t, Lk → x, and obtain the steady-state fluctuation theorem

πt(�S)

πt (−�S)
= e�S. (11)

4. Discussion

The FT for a rachet system is derived. The FT derived here is applicable to any system which
obeys a biased random walk and satisfies the detailed balance relation.

Especially, a complete example was recently given by Nishiyama et al [8]. They
performed an experiment where a single kinesin externally forced moves along a microtubule
obeying a biased random walk with regular 8 nm steps. And they measured the ratio of the
forward to backward movements at each load force 1–9 pN, the result agrees well with the
detailed balance relation. The FT derived in this letter would therefore be valid for this system.

Because the derivation of the FT consists of two parts, identity (6) and detailed balance
relation, there is the possibility that under some condition detailed balance does not hold and
the FT should be modified. This modification of the FT is an open problem.

Acknowledgments

The author is grateful to Professors P Gaspard and S Tasaki for fruitful discussions.

References

[1] Evans D J, Cohen E G D and Morriss G P 1993 Phys. Rev. Lett. 71 2401
[2] Crooks G E 1999 Phys. Rev. E 60 2721
[3] Kurchan J 1998 J. Phys. A: Math. Gen. 31 3719
[4] Lebowitz J L and Spohn H 1999 J. Stat. Phys. 95 333
[5] Jarzynski C 2000 J. Stat. Phys. 98 77
[6] Jarzynski C 1996 Phys. Rev. Lett. 78 2690

Jarzynski C 1999 J. Stat. Phys. 95 367



Letter to the Editor L79

[7] Reimann P 2002 Phys. Rep. 361 57–265
[8] Nishiyama M, Higuchi H and Yanagida T 2002 Nature Cell Biol. 4 790
[9] Risken H 1989 The Fokker–Planck Equation 2nd edn (Berlin: Springer)

[10] Doering C R, Horsthemke W and Riordan J 1994 Phys. Rev. Lett. 72 2984
[11] Gallavotti G and Cohen E G D 1995 Phys. Rev. Lett. 74 2694

Gallavotti G and Cohen E G D 1995 J. Stat. Phys. 80 931
Cohen E G D and Gallavotti G 1999 J. Stat. Phys. 96 1343

[12] Evans D J and Searles D 1994 Phys. Rev. E 50 1645
[13] Searles D and Evans D J 2000 J. Chem. Phys. 112 9727

Searles D and Evans D J 2000 J. Chem. Phys. 113 3503
Evans D J and Searles D 2002 Adv. Phys. 51 1529
Mittag E and Evans D J 2003 Phys. Rev. E 67 026113

[14] Maes C 1999 J. Stat. Phys. 95 367


